Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Michał Gryz, ${ }^{\text {a }}$ Wojciech
Starosta ${ }^{\text {b }}$ and Janusz
Leciejewicz ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Office for Medicinal Products, Medical Devices and Biocides, Ząbkowska 41, 03-736 Warszawa, Poland, and ${ }^{\mathbf{b}}$ Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland

Correspondence e-mail:
jlec@orange.ichtj.waw.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.137$
Data-to-parameter ratio $=16.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[hexaquamagnesium(II)] pyrazine-2,3,5,6-tetracarboxylate tetrahydrate

The unit cell of the title compound, $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left(\mathrm{C}_{8} \mathrm{~N}_{2} \mathrm{O}_{8}\right)$-$4 \mathrm{H}_{2} \mathrm{O}$, contains two hexaquamagnesium(II) cations, one fully deprotonated pyrazine-2,3,5,6-tetracarboxylate [(2,3,5,6PZTC $)^{4-}$] anion with its geometrical centre situated at the inversion centre and four solvent water molecules. The magnesium(II) ion is surrounded by six water molecules with their O atoms located at the apices of a fairly regular octahedron. $\mathrm{Mg}-\mathrm{O}$ bond distances range from 2.036 (1) to 2.113 (1) \AA (mean value $2.065 \AA$). The carboxylate groups are inclined to the pyrazine ring by 22.8 (1) and 99.1 (1) ${ }^{\circ}$. A threedimensional network of hydrogen bonds is built up between the coordinated water molecules and the carboxylate O atoms.

Comment

The unit cell of the title compound, (I), contains two $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, one fully deprotonated pyrazine-2,3,5,6-tetracarboxylate $\left[(2,3,5,6-\mathrm{PZTC})^{4-}\right]$ anion and four solvent water molecules. Fig. 1 shows the molecules with the atom-numbering scheme; Fig. 2 shows the packing of the molecules. The geometrical centre of the $(2,3,5,6-\mathrm{PZTC})^{4-}$ anion is situated at a centre of symmetry. The deprotonated carboxylic groups are inclined to the plane of the pyrazine ring by 22.8 (1) and $99.1(1)^{\circ}$. The bond distances and bond angles within the $(2,3,5,6-\mathrm{PZTC})^{4-}$ anion do not differ from those reported in structures of $3 d$ transition metal ion complexes with this ligand (Marioni et al., 1986, 1994; Graf et al., 1993). The magnesium ion and the surrounding six coordinated water molecules are located in general positions. The coordination polyhedron around the $\mathrm{Mg}^{\mathrm{II}}$ ion is a fairly regular octahedron with typical bond distances and angles (Table 1). Four solvent water molecules complete the contents of the unit cell. The

Figure 1
Atom-labelling scheme for the title compound. Non-H atoms are shown as 50% probability displacement ellipsoids. [Symmetry code: (i) $-x+2$, $-y,-z$.]

Received 24 August 2005 Accepted 31 August 2005 Online 7 September 2005

Figure 2
Packing of molecules in the unit cell of compound (I). H atoms have been omitted.
coordinated water molecules act as donors in a three-dimensional network of rather weak hydrogen bonds with O $\mathrm{H} \cdots \mathrm{O}>2.7 \AA$. The acceptors are the carboxylate O atoms of the anion molecules. Both solvent water molecules are donors for hydrogen bonds. The geometrical parameters of the hydrogen bond system are given in Table 2. Among metal complexes with pyrazine 2,3,5,6-tetracarboxylate, an ionic pattern has been reported in the $\mathrm{Mn}^{\mathrm{II}}$ compound (Marioni et al., 1994). Its monoclinic structure contains $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and doubly deprotonated $\left[\mathrm{H}_{2}(2,3,5,6-\mathrm{PZTC})\right]^{2-}$ anions. Separate $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations have also been observed in the structure of the copper complex $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \cdot\left[\mathrm{Cu}(2,3,5,6-\mathrm{PZTC})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, in which the ligand molecules are fully deprotonated and bridge the $\mathrm{Cu}^{\text {II }}$ ions to form catenated polyanions (Graf et al., 1993).

Experimental

A hot aqueous solution (50 ml) containing magnesium acetate tetrahydrate (2 mmol) was added with constant stirring to a hot aqueous solution (50 ml) containing pyrazine-2,3,5,6- tetracarboxylic acid (1 mmol). After boiling for 1 h , the solution was left to crystallize at room temperature. After several days, colourless crystals were found in the mother liquid.

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left(\mathrm{C}_{8} \mathrm{~N}_{2} \mathrm{O}_{8}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=588.98$
Triclinic, $P \overline{1}$
$a=6.7467$ (13) £
$b=9.1779$ (18) \AA
$c=10.731(2) \AA$
$\alpha=102.95(3)^{\circ}$
$\beta=103.29(3)^{\circ}$
$\gamma=100.02(3)^{\circ}$
$V=612.2(2) \AA^{3}$

Data collection

Kuma KM-4 four-circle diffractometer $\omega / 2 \theta$ scans
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2000)
$T_{\text {min }}=0.955, T_{\text {max }}=0.977$
3839 measured reflections
3565 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.137$
$S=1.14$
3565 reflections
217 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
Z=1
$$

$D_{x}=1.598 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=6-15^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular block, colourless $0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

2752 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=30.1^{\circ}$
$h=0 \rightarrow 9$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 14$
3 standard reflections every 200 reflections intensity decay: 3.1%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0859 P)^{2}\right. \\
& \quad+0.0954 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.60 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{Mg} 1-\mathrm{O} 11$	$2.0359(14)$	$\mathrm{Mg} 1-\mathrm{O} 14$	$2.0654(13)$
$\mathrm{Mg} 1-\mathrm{O} 12$	$2.0437(13)$	$\mathrm{Mg} 1-\mathrm{O} 13$	$2.0748(15)$
$\mathrm{Mg} 1-\mathrm{O} 15$	$2.0523(15)$	$\mathrm{Mg} 1-\mathrm{O} 16$	$2.1130(14)$
$\mathrm{O} 11-\mathrm{Mg} 1-\mathrm{O} 12$	$89.20(6)$	$\mathrm{O} 15-\mathrm{Mg} 1-\mathrm{O} 13$	$174.97(6)$
$\mathrm{O} 15-\mathrm{Mg} 1-\mathrm{O} 14$	$91.09(6)$	$\mathrm{O} 14-\mathrm{Mg} 1-\mathrm{O} 13$	$86.74(6)$
$\mathrm{O} 12-\mathrm{Mg} 1-\mathrm{O} 13$	$87.90(6)$	$\mathrm{O} 15-\mathrm{Mg} 1-\mathrm{O} 16$	$84.34(6)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 11-\mathrm{H} 112 \cdots \mathrm{O} 4^{\text {ii }}$	0.86 (3)	1.94 (3)	2.7935 (18)	174 (2)
$\mathrm{O} 11-\mathrm{H} 111 \cdots \mathrm{O} 1^{\text {iii }}$	0.85 (4)	1.86 (4)	2.7037 (18)	171 (3)
$\mathrm{O} 12-\mathrm{H} 121 \cdots \mathrm{O} 4^{\text {iv }}$	0.85 (3)	1.97 (3)	2.8074 (17)	172 (3)
$\mathrm{O} 12-\mathrm{H} 122 \cdots \mathrm{O} 1^{\text {ii }}$	0.86 (4)	1.86 (4)	2.7103 (19)	168 (3)
$\mathrm{O} 13-\mathrm{H} 132 \cdots \mathrm{~N} 1^{\text {iv }}$	0.86 (3)	2.10 (3)	2.9084 (18)	156 (3)
O14-H142 \cdots O22	0.90 (3)	1.96 (3)	2.846 (2)	167 (3)
O14-H141 $\cdots \mathrm{O}^{\text {v }}$	0.95 (3)	1.85 (3)	2.782 (2)	165 (3)
$\mathrm{O} 15-\mathrm{H} 151 \cdots \mathrm{O} 21^{\text {vi }}$	0.83 (3)	1.91 (3)	2.7323 (19)	174 (2)
$\mathrm{O} 15-\mathrm{H} 152 \cdots \mathrm{O} 21^{\text {vii }}$	0.85 (3)	1.89 (3)	2.7185 (18)	165 (3)
O16-H162 \cdots O3 $3^{\text {iv }}$	0.848 (16)	1.928 (16)	2.7739 (18)	175 (3)
$\mathrm{O} 21-\mathrm{H} 212 \cdots \mathrm{O} 2^{\text {viii }}$	0.88 (3)	1.83 (3)	2.7135 (18)	175 (3)

Symmetry codes: (ii) $x-1, y, 1+z$; (iii) $x, y, 1+z$; (iv) $1-x, 1-y, 1-z$; (v)
$2-x, 1-y, 1-z$; (vi) $x-1, y, z$; (vii) $1-x,-y, 1-z$; (viii) $1-x,-y,-z$.
H atoms were found in Fourier maps and refined with isotropic displacement parameters. The U values of the H atoms bonded to O 16 and O22 were set to $1.2 U_{\text {eq }}$ of the parent atom. The positional parameters of the H atoms bonded to O 22 were not refined. The $\mathrm{O}-$ H distances for the H atoms bonded to O 16 were restrained to 0.82 (2) Å.

metal-organic papers

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); structure refinement and publication software: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1992).

References

Graf, M., Stoeckli-Evans, H., Whitaker, C., Marioni, P.-A. \& Marty, W. (1993). Chimia, 47, 202-205.

Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.
Kuma (2001). DATAPROC. Version 10.0.7. Kuma Diffraction Ltd, Wrocław, Poland.
Marioni, P.-A., Marty, W., Stoeckli-Evans, H. \& Whitaker, C. (1994). Inorg. Chim. Acta, 219, 161-168.
Marioni, P.-A., Stoeckli-Evans, H., Marty, W., Gudel, H.-U. \& Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004-1011.

Oxford Diffraction (2000). CrysAlis RED. Version 1.69. Oxford Diffraction Ltd, Abingdon, Oxford, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1992). XP. Version 4.3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.

